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Key Points: 

• The observed weekly correlation between Indian monsoon rainfall and Arabian Sea dust 
can be simulated without dust radiative effects. 

• The model correlation results from the effect of the monsoon circulation upon dust 
emission and transport from the Arabian Peninsula.  

• The effect of dust radiative heating upon synoptic (few-day) variations of monsoon 
precipitation remains unknown. 
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Abstract 

 

Dust influences the Indian summer monsoon on seasonal timescales by perturbing atmospheric 

radiation.  On weekly time scales, aerosol optical depth retrieved by satellite over the Arabian Sea 

is correlated with Indian monsoon precipitation. This has been interpreted to show the effect of 

dust radiative heating on Indian rainfall on synoptic (few-day) time scales. However, this 

correlation is reproduced by Earth System Model simulations, where dust is present but its 

radiative effect is omitted. Analysis of daily variability suggests that the correlation results from 

the effect of precipitation on dust through the associated cyclonic circulation. Boundary layer 

winds that deliver moisture to India are responsible for dust outbreaks in source regions far upwind, 

including the Arabian Peninsula.  This suggests that synoptic variations in monsoon precipitation 

over India enhance dust emission and transport to the Arabian Sea.  The effect of dust radiative 

heating upon synoptic monsoon variations remains to be determined. 

 

1. Introduction 

 

Airborne soil particles (or mineral dust aerosol) influence the global atmospheric circulation and 

climate by perturbing Earth’s radiative balance through scattering and absorption [Coakley and 

Cess, 1985; Andrea, 1995; Tegen and Lacis, 1996, Miller et al., 2014].  In addition, dust alters 

climate indirectly by serving as nucleation sites for cloud water droplets and ice crystals [Nenes 

and Murray, 2014], while supplying iron to ocean ecosystems, catalyzing photosynthesis and 

drawing down atmospheric CO2 [Mahowald et al., 2011]. 

 

The summer monsoon provides the bulk of precipitation to India, and even small interannual 

variations can disproportionately impact economies and ecosystems throughout South Asia 

[Webster et al., 1998; Gadgil, 2003]. The role of aerosols in the seasonal and subseasonal 

modulation of summertime rainfall over India has long been the subject of scientific 

investigation [Chung et al., 2002; Menon et al., 2002; Ramanathan et al., 2005; Chung and 

Ramanathan, 2006; Lau et al., 2006; Nigam and Bollasina, 2010; Das et al., 2015; Solmon et al., 

2015, Kulshrestha and Sharma, 2015].   Dust is one of the major contributors to the aerosol load 

over the Indian subcontinent due to long range transport from North Africa and West Asia 
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(including the Arabian Peninsula), with the Great Indian Thar Desert as a local source [Prospero 

et al. 2002, Dey et al., 2004; Gautam et al., 2010, Sharma and Kulshrestha, 2014, Kumar et al., 

2015]. This highlights the role of the atmospheric circulation in aerosol loading from distant 

sources [Kaskaoutis et al., 2014], where phenomena local to the Indian Ocean like tropical 

cyclones raise dust far upwind [Ramaswamy, 2014].  In addition, through dynamical adjustment, 

the effect of dust upon climate and precipitation can extend thousands of kilometers beyond the 

region of highest aerosol concentration [Miller et al. 2014]. 

Various mechanisms have been described by which aerosols modify the Indian monsoon.  

Aerosols generally reduce net radiation into the surface, and this dimming requires a compensating 

decrease in the energy flux from the surface to the atmosphere, or else energy import by the ocean 

circulation [Miller and Tegen, 1998, Miller et al., 2004b, Ramanathan et al., 2005, Strong et al., 

2015].  The anomalous surface energy flux includes changes to evaporation that supply moisture 

to the atmosphere.  Precipitation is also altered by radiative heating within the dust layer that is 

compensated at equilibrium by anomalous vertical motion or diabatic heating (including latent 

heating).  Solar absorption within an aerosol layer acts as an elevated heat source, although its 

relation to anomalous ascent precipitation on seasonal time scales remains under discussion [Lau 

et al., 2006, Bollasina et al. 2008, Nigam and Bollasina, 2010; Kuhlmann and Quaas, 2010, 

Wonsick et al., 2014, Miller et al., 2014].  In general, the adjustment to dust radiative heating by 

perturbations to the energy and water cycles is complicated and occurs over a broader scale than 

the spatial extent of the aerosol layer [Miller et al., 2014].   

Aerosols reduce the transport of moisture from the Indian Ocean to the subcontinent during 

Northern Hemisphere (NH) summer [Ramanathan et al., 2005, Ganguly et al., 2012],  which these 

authors attribute to an aerosol weakening of the meridional temperature contrast between land and 

sea.  Meehl et al. [2008] invoke the same mechanism to attribute an increase in the model monsoon 

circulation to carbonaceous aerosols during the pre-monsoon season.   Bollasina et al. [2011] 

describe a similar mechanism, where aerosols reduce the energy gain within the ascending branch 

of the monsoon circulation, reducing meridional overturning and moisture import.  Despite the 

conflicting impact and variety of physical effects by which aerosols influence the monsoon, there 

is general agreement that aerosols are needed to account for observations of decreasing monsoon 
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precipitation during recent decades [Bollasina et al., 2011], especially absorbing aerosol species 

[Ramanathan et al., 2005, Wang et al., 2009]. 

The sensitivity of the Indian monsoon to aerosol radiative forcing has been studied mostly on 

interannual to climatological timescales [e.g. Menon et al., 2002; Ramanathan et al., 2005; Lau et 

al., 2006; Meehl et al., 2008; Wang et al., 2009; Bollasina et al., 2011].   For example, Solmon et 

al. [2015] find that prescribing interannual variations in emission from dust sources over the 

Arabian Peninsula using retrievals of aerosol optical depth brings a model decadal trend of 

monsoon precipitation into better agreement with observations.  Very few studies assess the 

relation between aerosol radiative forcing and faster, synoptic-scale variations of the monsoon. 

One exception is a study by Vinoj et al., [2014], who demonstrated a correlation between weekly 

averages of NH summer precipitation over central India from the Global Precipitation Climatology 

Project (GPCP) and retrievals of aerosol optical depth (AOD) by the Moderate Resolution Imaging 

Scatterometer (MODIS).  A week of high precipitation over central India during the summer 

monsoon is accompanied by high AOD over the northwestern Arabian Sea (with a reduction of 

AOD along the coast of the Bay of Bengal).   Vinoj et al., [2014] show that the correlation is absent 

in retrievals of AOD corresponding to the fine-aerosol fraction and thus a consequence of coarse-

mode natural aerosols such as dust and sea-salt.  Experiments with the NCAR Community 

Atmosphere Model 5 show that the dominant contribution to coarse-mode AOD in this region is 

by dust aerosols emitted over the Arabian Peninsula.   Vinoj et al. [2014] interpret the correlation 

as evidence that direct radiative forcing by dust aerosols over the Arabian Sea drives variations in 

precipitation over central India on weekly time scales.  

In this article, we revisit the interpretation of this observed correlation between Arabian Sea AOD 

and Indian monsoon precipitation.  Using an Earth system model that reproduces this correlation, 

we examine the relationship between dust aerosols and monsoon precipitation with higher 

temporal resolution, using daily model output to examine the processes linking these two physical 

quantities.   Significantly, our model is able to reproduce the observed correlation despite the 

omission of dust radiative forcing, with dust AOD computed solely as a diagnostic.  This leads us 

to hypothesize that the correlation results from the effect of Indian monsoon precipitation on dust 



 5 

emission over remote sources within the Arabian Peninsula that contribute to AOD over the 

Arabian Sea. 

2. Model Description and Methods 

Ten-year simulations were carried out with the NASA Goddard Institute for Space Studies (GISS) 

Earth System ModelE2.  The model version has been updated since its description by Schmidt et 

al. [2014], and reflects a version available in 2016 that features an improved Madden-Julian 

Oscillation [Del Genio et al., 2012; Kim et al., 2012], an important component of subseasonal 

variability over the Indian Ocean during NH summer [Zhang and Dong, 2004].  Model horizontal 

resolution is 2o latitude by 2.5o longitude with 40 vertical layers.  Dust sources correspond to 

topographic basins where vegetation that binds the soil particles is sparse [Ginoux et al., 2001].  

Dust emission, transport and deposition are calculated according to Miller et al. [2006], except for 

the addition of a size category for large particles (with radii between 8 and 16 µm), along with an 

updated wet removal scheme [Perlwitz et al. 2015].  Global, annual emission for particles with 

radii less than 8 µm is 1400 Tg, while the corresponding load is 19 Tg.  These values are within 

the observed range, although on the low end [Kok et al., 2017].   Emission increases non-linearly 

with the surface wind speed that is updated every fifteen minutes in the model, but also increases 

as a result of intense but ephemeral wind gusts whose effect upon emission is parameterized 

[Cakmur et al., 2004].  The dust aerosol distribution does not modify atmospheric radiation, but 

aerosol optical depth (AOD) is computed diagnostically, approximating dust particles as Mie 

scatterers with optical properties taken from the compilation of Sinyuk et al. [2003] that includes 

values retrieved by Dubovik et al. [2002] and Colarco et al. [2002].   

 

The simulations were carried out with sea surface temperature (SST) prescribed using an observed 

climatology [Rayner et al., 2003].  Use of prescribed SST removes the surface energy balance over 

the ocean (but not over land), distorting feedbacks between surface radiative forcing by dust, 

evaporation and the hydrologic cycle [Miller et al., 2004b].  However, our interest in this study is 

the relation between dust and synoptic-scale variations in Indian monsoon precipitation. To a good 

approximation, SST can be regarded as constant over the lifetime of an individual precipitation 

event, which is on the order of a week and short compared to the interannual time scale of 

adjustment for the upper ocean [Miller, 2012].   At times longer than a few weeks, adjustment of 
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the surface energy balance to dust radiative forcing leads to changes in SST and the monsoon 

[Miller et al., 2004b].  However, the dynamics of the synoptic scale variations are assumed to 

remain approximately unchanged despite the slow adjustment of the surface [c.f. Figure~13 of 

Miller, 2012].  To increase the number of synoptic-scale precipitation events and the statistical 

significance of their relation to dust, a ten-year simulation is carried out.  Model variables are 

archived every three hours.  To exclude the diurnal cycle and emphasize synoptic time scales of a 

few days, we analyze daily averages, or else values from a single time of day. 

 

To characterize variations of the summer monsoon, we calculate a precipitation index (PI) that is 

the spatial average of the model precipitation anomaly over grid boxes between 16° to 28° N and 

72.5° to 87.5° E.  Our choice of area is somewhat arbitrary, but closely resembles that used by 

previous studies to characterize precipitation over central India [Gadgil, 2003, Goswami et al., 

2006 and Vinoj et al., 2014].  This region contains the path of observed synoptic precipitation 

events [Gadgil, 2003].  To emphasize synoptic time scales, we filter periods longer than a month, 

as described in Text S1 of the supporting information. Figure S1 shows that the high-passed filtered 

PI is characterized by few-day (synoptic) variations, as observed [Gadgil, 2003]. 

 

3. Results 

 

3.1.  Revisiting the relation between AOD and the Central India Precipitation Index 

 

We first calculate the correlation between weekly averages of dust AOD and the Central India 

precipitation index (PI).  The correlation (Figure 1h) resembles the pattern calculated by Vinoj et 

al. [2014] using MODIS AOD and a precipitation index constructed from GPCP. High rainfall 

over central India is correlated with enhanced dust AOD over the northwestern Arabian Sea, with 

reduced AOD over central India and at the head of the Bay of Bengal.   (AOD is also reduced over 

the Arabian Peninsula near the Persian Gulf, within the path of dust delivered to the Arabian Sea 

from sources within southern Iraq.  In Text S3 of the supporting information, we suggest a reason 

for this negative correlation.) 
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Vinoj et al. [2014] interprets the positive correlation over the Arabian Sea as evidence that dust in 

this region is driving variations in rainfall over central India.  However, Figure 1h exhibits the 

same spatial pattern as observed, based upon simulations where dust has no radiative impact and 

AOD is computed only diagnostically. This suggests that weekly variations of monsoon 

precipitation over central India do not depend upon the radiative effect of mineral dust, and that 

some other physical mechanism is responsible for this correlation.  
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Figure 1. (a-g) Regression of daily-average dust aerosol optical depth (AOD) with the daily normalized Central India 

Precipitation Index (PI), constructed from precipitation averaged within the rectangle.  The regression pattern is 

dimensionless.   The vectors show the regressed model winds near 840 hPa.  The lag is relative to the PI; for negative 

lags, AOD leads precipitation.  Panel h: correlation of weekly averages of AOD and the Central India PI following 

Vinoj et al. (2014).  Regression and correlation coefficients are calculated for each summer (June 1 through August 
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31) during the ten-year simulation using the PI normalized separately for each season.  The plotted coefficients are an 

average of the ten summer values.  

 

3.2.  Daily variations in precipitation and AOD 

 

To investigate causality between synoptic variations of monsoon precipitation and dust AOD, we 

examine daily averages of model variables and their relation to the normalized daily PI.   (That is, 

the PI serves as the independent or explanatory variable.)  Figure 2 shows the regression of daily 

precipitation at lags between -3 days (where precipitation leads the PI) and +3 days (where 

precipitation lags the PI).  The regression coefficient is shaded and, due to our normalization of 

the PI, shows the magnitude of typical synoptic variations of precipitation in mm day-1.  Model 

wind vectors near 840 hPa that are regressed against the PI are also shown.  Figure 2 shows the 

slow westward trajectory of precipitation within a cyclonic vortex.  Maximum precipitation over 

central India (Figure 2d) is preceded by the appearance of the vortex a few days earlier over the 

eastern Bay of Bengal (Figure 2a).  The vortex is trailed by an anticyclonic circulation where 

precipitation is anomalously low (Figure 2e, f).  The vortex pair dissipates a few days after the 

precipitation maximum over central India, when the seed of a new storm can be seen along the 

Myanmar coast (Figure 2g).  This westward-drifting circulation resembles observed synoptic-scale 

monsoon depressions described by Gadgil [2003] that originate in the Bay of Bengal before 

traveling over India.  The model reproduces the synoptic time scale of the observed events, 

although the model circulation does not drift as far to the northwest over India as observed (Figure 

S3).   This discrepancy is also evident in the spatial distribution of climatological JJA rainfall 

shown in Figure S2. 
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Figure 2. Same as Figure 1 but for daily precipitation in units of mm day-1.  

 

Figure 1 shows the relation between the westward-traveling circulation and AOD.  The plume of 

dust whose weekly averaged AOD is correlated with central India precipitation (Figure 1h) can be 
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seen to originate over the Arabian Peninsula, drifting to the southeast and crossing the coast at 

Oman (Figure 1b) as the precipitation moves westward across the Bay of Bengal toward India.  

This northwesterly flow is part of the low-level regional circulation associated with the 

precipitation event (as shown by the regressed vector of 840 hPa winds in Figure 1).  This synoptic 

circulation is superimposed on the climatological flow that is northerly or northwesterly over the 

Arabian Peninsula before turning near the coast to join the monsoon southwesterlies over the 

Arabian Sea (Figure S2).   The dust plume over the Arabian Sea exhibits the highest AOD and is 

most extensive in the days before the maximum of precipitation over central India, while 

dispersing in the days following the precipitation maximum.  These findings suggest that the 

correspondence of AOD over the Arabian Sea with central India precipitation, as described by 

Vinoj et al. [2014], is a consequence of dust emission upwind and transport by the low-level 

circulation associated with westward-drifting synoptic precipitation over the Indian subcontinent. 

 

3.3.  Dust emission and surface wind speed associated with the PI 

 
Figure 3 shows dust emission averaged between 0600 and 0900 UTC regressed against the daily 

averaged PI.  Dust emission has a strong diurnal cycle with the greatest mobilization generally 

between 1000 and 1600 local solar time; the three-hour interval in the figure corresponds to the 

first half of this period over the Arabian Peninsula, where sources upwind of the Arabian Sea are 

located.   Enhanced emission is apparent along the eastern side of the Arabian Peninsula stretching 

from southern Iraq and the Tigris-Euphrates plain to the coastal sabkhas bordering the Persian 

Gulf.  These are regions of high and persistent dust concentration indicated by satellite radiances, 

and identified as dust sources by Prospero et al. [2002].  Emission remains anomalously large 

during most of the lifetime of the vortex (Figures 3). 
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Figure 3. Same as Figure 1 but for dust emission (0600-0900 UTC) in units of µg m-2 s-1.  Vectors represent the 

regressed wind in the lowest model layer at the same time of day. 

 



 13 

The regression of surface wind speed at the corresponding time (0600-0900 UTC) is shown in 

Figure 4, with wind vectors corresponding to the lowest model layer.  Over dry continental regions, 

surface wind speed is generally largest in the late morning (local time), after momentum from an 

overlying nocturnal jet is mixed downward by convective thermals that begin after sunrise [e.g. 

Membery, 1983], consistent with the onset of dust emission around this time [N’Tchayi Mbourou 

et al., 1997, Miller et al., 2004c, Allen and Washington, 2014].  Enhanced dust emission over the 

Arabian Peninsula (Figure 3) corresponds to where the wind speed anomaly is positive (Figure 4) 

and reinforces the climatological Shamal winds (Figure S2) that are northerly or northwesterly 

during this season [Membery 1983].   Notaro et al. [2013] and Hamidi et al. [2013] use station 

observations and a combination of reanalyses and MODIS images to show that dust emission from 

this region is often associated with strengthening of the Shamal wind and transport of dust toward 

the Arabian Sea and monsoon trough, especially during June and July.  The wind vectors in Figures 

3 and 4 show that reinforcement of the Shamal is part of a larger-scale convergence of the model 

low-level flow toward the westward-migrating region of low pressure that brings monsoon 

precipitation to India.  Ramaswamy [2014] similarly found that tropical cyclones over the Indian 

Ocean enhance dust emission by strengthening low-level convergence over the Arabian Sea.  In 

contrast, the model synoptic events are more frequent but weaker than the tropical cyclones, with 

winds around the vortex no stronger than a few meters per second. 

 

The approach of the vortex over central India has an opposite effect upon dust emission over the 

Thar Desert (Figure 3d-f), where the anomalous cyclonic flow opposes the climatological westerly 

winds (Figures 4d-f and S2), reducing emission from this source region.  Emission is eventually 

reestablished as the vortex dissipates (Figure 3g).  
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Figure 4. Same as Figure 1 but for wind speed (0600-0900 UTC) in m s-1.  To emphasize variations over land, 

regression coefficients for wind speed are not plotted over the ocean (where they are relatively large).  Vectors 

represent the regressed wind in the lowest model layer at the same time of day. 
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4. Conclusions 

 

The GISS Earth System ModelE2 reproduces the observed correlation between weekly averages 

of MODIS aerosol optical depth over the Arabian Sea and Indian monsoon precipitation that was 

established by Vinoj et al. [2014], who showed that dust makes the main contribution among 

aerosol species to the correlation of AOD, and interpreted this correlation to result from the effect 

of dust radiative heating upon synoptic variations in monsoon precipitation.   However, ModelE2 

reproduces this correlation despite omitting the radiative effect of dust.  This suggests that radiative 

heating by dust over the Arabian Sea is not fundamental to variations of monsoon precipitation at 

weekly and shorter time scales.   To identify the physical phenomena responsible for the correlation 

of dust on monsoon precipitation, we formed a normalized Central India precipitation index that 

we regressed against daily averaged model output.  On synoptic time scales, precipitation over 

central India is associated with the arrival of a westward-propagating cyclonic circulation (with 

reduced precipitation within the trailing anticyclone).  During the lifetime of this circulation, dust 

is emitted over the Arabian Peninsula and is transported by the low-level winds to the Arabian 

Sea.  Dust emission is the result of a strengthened Shamal wind along the eastern part of the 

Arabian Peninsula, including the Tigris-Euphrates basin and the coastal sabkhas of the Persian 

Gulf.   That is, the observed correlation of Arabian Sea AOD and monsoon precipitation is the 

result of dust emission and transport by the regional circulation associated with the westward-

propagating monsoon depressions that bring precipitation to central India. 

Other dust sources have been shown to contribute to AOD over the Arabian Sea.  For example, 

Kaskaoutis et al. [2014] describe the contribution by the ephemeral drying of marshes within the 

Sistan Basin near the border of Iran and Afghanistan that are the result of prolonged drought (in 

that study, attributed to La Niña).  The circulation indicated by the regressed wind vectors in 

Figures 2 and 3 indicates anomalous northerly winds in this region during the lifetime of the Indian 

monsoon depressions.   These northerlies associated with monsoon precipitation correspond to an 

enhancement of the climatological Levar winds (Figure 4 and S2) that would contribute to Arabian 

Sea AOD in a model that accounted for these ephemeral sources, or else used a source map giving 

greater emphasis to this region [e.g. Ginoux et al., 2012].  

The impact of dust radiative heating on synoptic precipitation remains unclear.  Vinoj et al. (2014) 

show that the cessation of dust emission leads to a decrease of Indian monsoon precipitation within 



 16 

ten days.  This is interpreted as evidence that dust radiative heating drives variations in monsoon 

precipitation on this short time scale.  However, this evidence is ambiguous since the entire dust 

load is rapidly eliminated, including both synoptic variations of dust represented by the correlation 

pattern but also the seasonally varying background distribution of dust upon which the synoptic 

variations are superimposed.  Thus, the initial downward trend of precipitation also includes the 

fast response to the removal of the background dust [c.f. Ganguly et al., 2012], making it 

impossible to isolate the effect of synoptic scale variations of dust radiative heating and 

demonstrate a significant impact on precipitation.  

 

On longer (seasonal) time scales, models indicate that dust radiative forcing alters Indian monsoon 

rainfall [e.g. Miller et al., 2004b, Solmon et al., 2015], although the perturbation depends upon 

imprecisely known radiative properties of the dust particles [e.g. Perlwitz and Miller, 2010, Jin et 

al., 2016]. On synoptic time scales, the influence of dust upon precipitation remains of unknown 

magnitude, either as a result of the direct radiative forcing considered here or the effects of dust 

upon cloud thermodynamics and microphysics.   Incorporating radiative effects of dust aerosols 

has been shown to improve daily forecasts of surface temperature [Perez et al., 2006].  There is a 

need to better understand the physical processes linking dust radiative heating and precipitation, 

and the time scales over which this linkage occurs. 
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Text S1. Anomaly calculation 

 

Synoptic-scale anomalies of daily averaged variables are calculated by applying a high-pass 

Blackman filter with a cut-off frequency of 30 days. The filter is applied in the time domain 

using a moving window with 61 terms, a value chosen to give a sharp reduction in power across 

the cut-off frequency.  As an example, the decomposition of the Central India Precipitation Index 



during the first year of the simulation is shown in Figure S1a, where the anomalous (high-

frequency) component is in blue, the low-frequency background is in red, and the total is in 

black.  The anomaly is characterized by synoptic-scale (few day) fluctuations in precipitation 

that are present mainly during NH summer. 

 

Figure S1.  Decomposition of the Central India Precipitation Index a) as simulated by the model during its first year 

and b) as retrieved by the Tropical Rainfall Measuring Mission (TRMM) during 2006. The anomalous (high-

frequency) component is in blue, the low-frequency background is in red, and the total is in black.  

 

Text S2. Representation of the Indian Monsoon in ModelE2 

 

Figure S2 compares the low-level winds and precipitation in the vicinity of the Indian monsoon 

for NH summer (JJA) as calculated by the NASA GISS Earth System ModelE2 with the 

National Center for Environmental Prediction (NCEP-NCAR) reanalysis winds [Kalnay et al., 

1996] and the Global Precipitation Climatology Project (GPCP) precipitation [Huffman et al., 

2009]. 



The model generally reproduces the magnitude and orientation of the observed circulation, 

including the cross-equatorial southwesterly flow over the Arabian Sea along with the weaker 

northwesterly Shamal and northerly Levar winds over the Arabian Peninsula and eastern Iran, 

respectively, that merge offshore with the southwesterlies.  (Neither ModelE2 nor the reanalysis 

model have sufficient resolution to represent the intricate topography in some regions, 

complicating the comparison.)  Over the Bay of Bengal, the model westerlies are too strong. 

The spatial distribution of model precipitation is generally in agreement with the GPCP pattern, 

although the magnitude of precipitation is excessive in the model, especially along the Myanmar 

coast and in the foothills of Nepal and Bhutan at the head of the Bay of Bengal.  The excessive 

precipitation in this region is associated with the overestimated cyclonic flow and westerlies 

across the Bay of Bengal.  

 

Figure S2. Climatological mean JJA (a) Earth System ModelE2 winds near 840 hPa (ms
-1

) and precipitation (mm  

day
-1

) and (b) NCEP-NCAR 850 hPa winds and GPCP precipitation.  The model winds correspond to the seventh 

sigma-layer in the model, whose height varies with topography and variations of surface pressure.  Globally, this 

level corresponds to an average pressure of 842 hPa. 

 

Precipitation during the summer monsoon is generally observed as traveling depressions that 

originate over the Bay of Bengal before propagating westward onto the subcontinent [Gadgil, 

2003].  Figure S3 shows the zonal propagation of daily precipitation, averaged over the latitude 

band of the Central India Precipitation Index, according to ModelE2 and daily retrievals from the 

Tropical Rainfall Measuring Mission (TRMM).  The latter are derived by merging multi-

platform measurements of outgoing longwave radiation along with microwave and radar 

(Product 3B42, Level 3, Version 7; Huffman et al., 2010).  Model simulations use annually 



repeating, climatological sea surface temperature, so only general features of the calculated 

precipitation like the magnitude and frequency of events or the rate of westward displacement 

can be compared to retrievals that correspond to a particular year.  For the sake of illustration, 

Figure S3 compares ModelE2 to TRMM retrievals from 2006.  

 

Figure S3.  Precipitation (mm day
-1

) averaged between the latitudes of 16 and 28
o
N (a) as simulated by ModelE2 

during the first year and (b) retrieved by TRMM during 2006. 

 

Monsoon depressions in the model reproduce the general characteristics of precipitation 

retrieved by TRMM, with onshore propagation from the Bay of Bengal as described by Gadgil 

[2003].  The model depressions show a similar seasonality and move westward at the observed 

rate, although with a slightly greater zonal extent than observed, presumably an indication that 

the depressions are only barely resolved by the 2.5o longitudinal spacing of the model grid.  

Figure S1 similarly shows that synoptic variations of ModelE2 precipitation have a magnitude 

and frequency over central India that is comparable to those in the TRMM retrievals.  

Figure S3 suggests that model depressions dissipate too rapidly as they come onshore, 

underestimating the delivery of precipitation to the interior of the subcontinent (approximately 



west of 80oE).  This is corroborated by the spatial distribution of seasonal JJA precipitation in 

Figure S2, where GPCP precipitation extends to the northwest of India to a greater extent than in 

the model.  

The meridional extent of Indian monsoon precipitation is shown in Figure S4.   TRMM retrievals 

show the largest precipitation centered between 15 and 20oN, with an intermittent secondary 

maximum south of the equator that is generally associated with monsoon ‘breaks’ or reduced 

precipitation over India [Gadgil, 2003].  ModelE2 centers its Indian precipitation at the correct 

latitude, while slightly underestimating the secondary maximum near the equator.  The model 

calculates a spurious secondary maximum of precipitation at the head of the Bay of Bengal and 

the foothills of the Himalayas.  In both the model and TRMM retrievals, some of the traveling 

monsoon depressions are preceded by the arrival of events propagating from lower latitudes. 

 

Figure S4.  Precipitation (mm day
-1

) near 90
o
E (an average between 87.5 and 92.5

o
E)  (a) as simulated by ModelE2 

during the first year and (b) retrieved by TRMM during 2006. 

 

Text S3. Identifying Dust Sources that Contribute to the Correlation of Arabian Sea AOD 

and Central India Precipitation  

 



According to both ModelE2 and the observational analysis of Vinoj et al., [2014], the correlation 

of weekly averaged precipitation and AOD is positive (and largest) over the Arabian Sea, but 

negative upwind within the Arabian Peninsula (Figure 1h). This raises the question, at least with 

regard to ModelE2 where the dust source can be identified, of why there is not a positive 

correlation of AOD and Indian precipitation along the entire plume trajectory extending from the 

Arabian Sea to the dust sources within southern Iraq and the Tigris and Euphrates river valleys, 

where emission is highly correlated with Indian monsoon precipitation (Figure 3).   More 

generally, this raises the question of whether dust sources from another region makes the 

dominant contribution to AOD over the Arabian Sea. 

We believe that the alternating sign of the AOD correlation along the ostensible plume trajectory 

(parallel to the northwesterly Shamal winds) is the result of reversals in the direction of transport 

that are rapid compared to the weekly averaging period used to calculate the spatial pattern of 

correlation [Vinoj et al., 2014].   That is, southern Iraq is indeed the source of Arabian Sea dust 

in the model, but the negative correlation over the Arabian Peninsula results from aliasing these 

sub-weekly transport variations when correlating weekly averages.  

In general, AOD results from a complicated balance between dust emission upwind, and 

subsequent transport along with deposition. In our model, emission within the Tigris and 

Euphrates valleys regresses strongly against monsoon precipitation throughout the entire analysis 

period of each figure (corresponding to lags between -3 and +3 days relative to Central India 

precipitation), although emission is slightly larger and more extensive at negative lags.  Early in 

the analysis period (at negative lags), the northwesterly winds near the surface are strongest 

(Figure 3), and reinforced by the overlying winds near 840 hPa; (Figure 1a).  Two days later, the 

northwesterly surface winds are weaker and the 840 hPa flow has reversed direction, becoming 

southerly (Fig 1c).  A few days after this, the 840 hPa winds are northeasterly or easterly 

(Figures 1e and f).  These variations in wind direction generally correspond to a reduction in 

AOD along the northwesterly trajectory connecting the Tigris and Euphrates river valleys to the 

Arabian Sea (Figures 1c, e-g), as dust is deflected from this path, consistent with the negative 

correlation of weekly averaged AOD over the Arabian Peninsula in Figure 1h (and observed by 

Vinoj et al., 2014).  Thus, the negative correlation of the weekly averages over the Arabian 

Peninsula and ostensible trajectory of the dust reaching the Arabian Sea result from transport that 

varies in direction within this averaging period.  



The observed negative correlation over the Arabian Peninsula, as analyzed by Vinoj et al. [2014], 

may have an alternative explanation: dust from the Arabian Sea may receive significant 

contributions from another source.  In ModelE2, the Tigris and Euphrates river valley appear to 

make the leading contribution to Arabian Sea dust, but this result may depend upon the regional 

distribution of dust sources prescribed in the model.   

The Sistan Basin in southeastern Iraq is a potential source of Arabian Sea dust [c.f. Kaskaoutis et 

al., 2014].  In ModelE2, the winds from this source region are northerly prior to and coincident 

with precipitation over Central India (Fig 1b-e).  A prescription of dust sources that gives greater 

emphasis to the Sistan Basin would allow a larger contribution to Arabian Sea AOD from this 

region. We think the source of dust over the Arabian Sea that is correlated with weekly averaged 

precipitation over Central India is interesting for remaining unsettled. 

 

 

 

References: 

 

Gadgil, S. (2003), The Indian monsoon and its variability, Annual Review of Earth and Planetary 

Sciences, 31(1), 429–467, doi: 10.1146/annurev.earth.31.100901.141251.  

Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu (2009): Improving the global precipitation 

record: GPCP Version 2.1, Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000. 

 

Huffman, G. J., R. F. Adler, D. T. Bolvin, E. J. Nelkin, 2010: The TRMM Multi-satellite 

Precipitation Analysis (TMPA). Chapter 1 in Satellite Rainfall Applications for Surface 

Hydrology, F. Hossain and M. Gebremichael, Eds. Springer Verlag, ISBN: 978-90-481-2914-0, 

3-22. 

Kaskaoutis, D., Rashki, A., Houssos, E., Goto, D., and Nastos, P. (2014), Extremely high aerosol 

loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and 

Sistan dust storms, Atmos. Environ., 94, 374–384.  

 



Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, 

S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Hig- 

gins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The 

NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, 

doi:10.1175/1520- 0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.  

Vinoj, V., P. J. Rasch, H. Wang, J. H. Yoon, P. L. Ma, K. Landu, and B. Singh (2014), Short-

term modulation of Indian summer monsoon rainfall by West Asian dust, Nat. Geosci., 7(4), 

308–313, doi:10.1038/ngeo2107. 

 

 

 


